Superconvergence in Finite Element Methods for the Optimal Control Problem of the Stokes Equations

نویسندگان

  • A. Rösch
  • B. Vexler
  • A. RÖSCH
چکیده

An optimal control problem for 2-d and 3-d Stokes problem is investigated with pointwise control constraints. This paper is concerned with the discretization of the control by piecewise constant functions. The state and the adjoint state are discretized by stable or stabilized finite element schemes. In the paper a superconvergence based post-processing is suggest, which allows for significant improvement of the accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Superconvergence for Optimal Control Problems Governed by Stokes Equations

In this paper, the global superconvergence analysis for the finite element approximation of the distributed optimal control governed by Stokes equations is discussed. For the control, a global superconvergence result is derived by applying patch recovery technique. For the state and the co-state, the global superconvergence results are derived by applying some postprocessing techniques for the ...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Analysis of a finite volume element method for the Stokes problem

In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projecti...

متن کامل

Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem

The supercloseness and superconvergence property of stabilized finite element methods applied to the Stokes problem are studied. We consider consistent residual based stabilization methods as well as nonconsistent local projection type stabilizations. Moreover, we are able to show the supercloseness of the linear part of the MINI-element solution which has been previously observed in practical ...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014